Quasi-exactly solvable problems and random matrix theory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-exactly solvable problems and random matrix theory

There exists an exact relationship between the quasi-exactly solvable problems of quantum mechanics and models of square and rectangular random complex matrices. This relationship enables one to reduce the problem of constructing topological (1/N) expansions in random matrix models to the problem of constructing semiclassical expansions for observables in quasi-exactly solvable problems. Lie al...

متن کامل

Quasi Exactly Solvable 2×2 Matrix Equations

We investigate the conditions under which systems of two differential eigenvalue equations are quasi exactly solvable. These systems reveal a rich set of algebraic structures. Some of them are explicitely described. An exemple of quasi exactly system is studied which provides a direct counterpart of the Lamé equation.

متن کامل

Quasi exactly solvable matrix Schrödinger operators

Two families of quasi exactly solvable 2 × 2 matrix Schrödinger operators are constructed. The first one is based on a polynomial matrix potential and depends on three parameters. The second is a one-parameter generalisation of the scalar Lamé equation. The relationship between these operators and QES Hamiltonians already considered in the literature is pointed out.

متن کامل

On quasi-exactly solvable matrix models

An efficient procedure for constructing quasi-exactly solvable matrix models is suggested. It is based on the fact that the representation spaces of representations of the algebra sl(2,R) within the class of first-order matrix differential operators contain finite dimensional invariant subspaces. The Lie-algebraic approach to constructing quasi-exactly solvable one-dimensional stationary Schröd...

متن کامل

v 1 1 0 O ct 1 99 5 Quasi - exactly solvable problems and random matrix theory

There exists an exact relationship between the quasi-exactly solvable problems of quantum mechanics and models of square and rectangular random complex matrices. This relationship enables one to reduce the problem of constructing topological (1/N) expansions in random matrix models to the problem of constructing semiclassical expansions for observ-ables in quasi-exactly solvable problems. Lie a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters A

سال: 1996

ISSN: 0375-9601

DOI: 10.1016/0375-9601(96)00244-7